Requirement of negative residues, Asp 95 and Asp 105, in S2 on membrane integration of a voltage-dependent K+ channel, KAT1.
نویسندگان
چکیده
Voltage-dependent K+ channels consist of a voltage-sensing region and a pore-forming region. Here we have identified the negative residues of the second transmembrane segment in the plant voltage-dependent K+ channel, KAT1, which involves the function of voltage sensing. Point mutations at D95 and D105 but not D89 and D116 failed to complement the K+ uptake deficient properties of the mutant yeast. In vitro translation and translocation experiments showed that the membrane integration of the third and fourth segments involving voltage sensor were impaired by the replacement of D95 or D105 by serine. These data show that both the residues play a crucial role in the membrane topogenesis of the voltage sensor in KAT1.
منابع مشابه
Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain.
Membrane-embedded voltage-sensor domains in voltage-dependent potassium channels (K(v) channels) contain an impressive number of charged residues. How can such highly charged protein domains be efficiently inserted into biological membranes? In the plant K(v) channel KAT1, the S2, S3, and S4 transmembrane helices insert cooperatively, because the S3, S4, and S3-S4 segments do not have any membr...
متن کاملVoltage-sensor transitions of the inward-rectifying K+ channel KAT1 indicate a latching mechanism biased by hydration within the voltage sensor.
The Kv-like (potassium voltage-dependent) K(+) channels at the plasma membrane, including the inward-rectifying KAT1 K(+) channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K(+) homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Und...
متن کاملMutation of conserved negatively charged residues in the S2 and S3 transmembrane segments of a mammalian K+ channel selectively modulates channel gating.
Voltage-gated channel proteins sense a change in the transmembrane electric field and respond with a conformational change that allows ions to diffuse across the pore-forming structure. Site-specific mutagenesis combined with electrophysiological analysis of expressed mutants in amphibian oocytes has previously established the S4 transmembrane segment as an element of the voltage sensor. Here, ...
متن کاملA Cyclic Nucleotide-Gated Channel Mutation Associated with Canine Daylight Blindness Provides Insight into a Role for the S2 Segment Tri-Asp motif in Channel Biogenesis
Cone cyclic nucleotide-gated channels are tetramers formed by CNGA3 and CNGB3 subunits; CNGA3 subunits function as homotetrameric channels but CNGB3 exhibits channel function only when co-expressed with CNGA3. An aspartatic acid (Asp) to asparagine (Asn) missense mutation at position 262 in the canine CNGB3 (D262N) subunit results in loss of cone function (daylight blindness), suggesting an imp...
متن کاملFat requirement of hybrid Asp (Leuciscus aspius ♀) × Caspian Kutum (Rutilus frisii ♂); effect on growth and biochemical indices
This study aimed to determine the fat requirement and effect of dietary fat levels on growth and body composition indices of hybrid Asp (Leuciscus aspius ♀) × Caspian Kutum (Rutilus frisii ♂). For this purpose, 252 fish with an average weight of 29.3 ± 5.8 g were introduced in a completely randomized design with six treatments each with triplicate groups. After two weeks of adaptation, fish wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioscience, biotechnology, and biochemistry
دوره 67 4 شماره
صفحات -
تاریخ انتشار 2003